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Abstract. Data with multiple representations (views) arise naturally in
many applications and multi-view algorithms can substantially improve
the classification and clustering results. In this work, we study the prob-
lem of multi-view clustering and propose a multi-view convex mixture
model that locates exemplars (cluster representatives) in the dataset by
simultaneously considering all views. Convex mixture models are simpli-
fied mixture models that exhibit several attractive characteristics. The
proposed algorithm extends the single view convex mixture models so as
to handle data with any number of representations, taking into account
the diversity of the views while preserving their good properties. Empir-
ical evaluations on synthetic and real data demonstrate the effectiveness
and potential of our method.
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1 Introduction

The most common approach for the machine learning setting, is to assume that
data are represented in a single vector or graph space. However, in many real-
life problems multi-view data arise naturally. Multi-view data are instances that
have multiple representations (views) from different feature spaces. Usually these
multiple views are from different vector spaces or different graph spaces or a
combination of vector and graph spaces. The most typical example are web
pages. Web pages can be represented with a term vector for the words in the
web page text, another term vector for the words in the anchor text and a
hyper-link graph.

The natural and frequent occurrence of multi-view data has raised interest in
the so called multi-view learning. The main challenge of multi-view learning is to
develop algorithms that use multiple views simultaneously, given the diversity of
the views. Most studies on this topic address the semi-supervised classification
problem and multi-view classification algorithms have often proven to utilize
unlabeled data effectively and improve classification accuracy (e.g. [1,2,3]).

This work focuses on multi-view unsupervised learning and particularly in
multi-view clustering. Multi-view clustering explores and exploits multiple rep-
resentations simultaneously in order to produce a more accurate and robust
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partitioning of the data than single view clustering. The available literature for
this topic (e.g. [4,5,6,7]) is still limited, with encouraging results though. Borrow-
ing the terminology of [7], there exist two approaches in multi-view clustering:
centralized and distributed. Centralized algorithms simultaneously use all avail-
able views to cluster the dataset, while distributed algorithms first cluster each
view independently from the others, using an appropriate single view algorithm,
and then combine the individual clusterings to produce a final partitioning.

Most studies in multi-view clustering follow the centralized approach and
extend well-known clustering algorithms to the multi-view setting. Bickel and
Scheffer [4] developed a two-view EM and a two-view k -means algorithm under
the assumption that the views are independent. They also studied the problem of
mixture model estimation with more than two views and showed that co-EM [8]
is a special case of their formulation [9]. De Sa [5] proposed a two-view spectral
clustering algorithm that creates a bipartite graph of the views and is based on
the “minimizing-disagreement” idea. This method also assumes that the views
are independent. An algorithm that generalizes the single view normalized cut to
the multi-view case and can be applied to more than two views was introduced
by Zhou and Burges [6]. Following the distributed approach, Long et al. [7]
proposed a general model for multi-view unsupervised learning which handles
more than two views and representations from both vector and graph spaces.

In this paper we follow the centralized approach and present a multi-view clus-
tering algorithm based on the convex mixture model of Lashkari and Golland [10].
Convex mixture models are a special case of mixture models that identify exem-
plars in the dataset by optimizing a convex criterion and have shown promising
results in [10]. One of many attractive features is their applicability when only
the dataset pairwise distance matrix is available and not the data points. The
proposed multi-view convex mixture model finds exemplars based on all views
and handles any number of views. The experiments with our algorithm demon-
strate a considerable improvement on the clustering results compared to i) single
view convex mixture models applied on the individual views and ii) single view
convex mixture models that use the concatenation of the views.

The rest of this paper is organized as follows. Section 2 reviews the single view
convex mixture model, while the proposed multi-view algorithm is presented in
section 3. The experimental evaluation on artificial data and linked documents
is discussed in section 4 and section 5 concludes this work.

2 Convex Mixture Models

Exemplar-based mixture models [10], also called convex mixture models (CMM ),
result in soft assignments of data points to clusters and in the extraction of repre-
sentative exemplars from the dataset. They are simplified mixture models whose
components equal in number the dataset size, the components’ distributions are
centered at the dataset points, thus representing all data points as cluster center
candidates (candidate exemplars), and the only adjustable parameters are the
components’ priors.
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Given a dataset X = {x1,x2, . . . ,xN} , xi ∈ �d the convex mixture model
distribution is Q(x) =

∑N
j=1 qjfj(x), x ∈ �d, where qj denotes the prior prob-

ability of the j-th component, satisfying the constraint
∑N

j=1 qj = 1, and fj(x)
is an exponential family distribution on random variable X with its expecta-
tion parameter equal to the j-th data point. Taking into account the bijection
between regular exponential families and Bregman divergences [11], we write
fj(x) = C(x) exp(−βdϕ(x,xj)) with dϕ denoting the Bregman divergence cor-
responding to the components’ distributions.

A clustering is produced by maximizing the log-likelihood L
(
{qj}N

j=1 ;X
)
,

shown in (1), over {qj}N
j=1 s.t.

∑N
j=1 qj = 1. The constant β controlls the sharp-

ness of the components and also the number of clusters identified by the convex
mixture model when the soft assignments are turned into hard ones. Higher β
values result in more clusters in the final solution.

L
(
{qj}N

j=1 ;X
)

=
1
N

N∑

i=1

log

⎡

⎣
N∑

j=1

qjfj(xi)

⎤

⎦ =
1
N

N∑

i=1

log

⎡

⎣
N∑

j=1

qje
−βdϕ(xi,xj)

⎤

⎦

+ const. (1)

The log-likelihood function (1) can be expressed in terms of the Kullback-
Leibler (KL) divergence if we define P̂ (x) = 1/N,x ∈ X to be the empirical
distribution of the dataset and by noting that

D(P̂‖Q) = −
∑

x∈X
P̂ (x) log Q(x) − H(P̂ ) = −L

(
{qj}N

j=1 ;X
)

+ const. , (2)

where H(P̂ ) is the entropy of the empirical distribution that does not depend
on the parameters of the convex mixture model. Now the maximization of (1)
is equivalent to the minimization of (2). This minimization problem is convex
and can be solved with an efficient-iterative algorithm. As proved in [12], the
updates on the components’ prior probabilities are given by

q
(t+1)
j = q

(t)
j

∑

x∈X

P̂ (x)fj(x)
∑N

j′=1 q
(t)
j′ fj′(x)

(3)

and the algorithm is guaranteed to converge to the global minimum as long as
q
(0)
j > 0, ∀j. The prior probability qj associated with data point xj is a measure

of how likely this point is to be an exemplar and will be of great importance
when we present our multi-view algorithm in section 3.

Clustering with a convex mixture model requires to select a value for the
parameter β (0 < β < ∞). It is possible to identify a reasonable range of β
values by determining a reference value β0. In [10], the following empirical value
(4) has been proposed, achieving good results in their experiments.

β0 = N2 log N/
∑

i,j

dϕ(xi,xj) (4)
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Convex mixture models showed their potential when a Gaussian convex mix-
ture model, i.e. with Euclidean distance as the Bregman divergence, outper-
formed a fully parametrized Gaussian mixture model in [10]. This proved that
the smaller flexibility of convex mixture models, as {qj}N

j=1 are the only param-
eters, is well compensated by their ability to avoid the initialization problem
and always locate the global optimum. Another important feature is that only
the pairwise data distances take part in the calculation of the priors, thus the
values of the data points are not required. As stated in [10], the method can be
extended to any proximity data as long as the distance matrix D is available,
by simply replacing dϕ(xi,xj) with Dij in (1) and the convexity is not affected.

3 Multi-view Convex Mixture Models

Motivated by the potential and the advantages of the convex mixture models of
section 2, in this work we extend them to data with multiple representations.
Following the centralized approach, exemplars are identified by defining for each
view a convex mixture model distribution, with common priors qj across all
views, as well as the corresponding empirical distribution and minimizing the
KL divergence between those two distributions summed over all views.

3.1 Model Description

Suppose we are given a dataset with N instances, X = {x1,x2, . . . ,xN}, and
for each instance V views are available. Let us define X =

{X 1,X 2, . . . ,X V
}
,

such that X v contains the representations of the instances in the v-th view, i.e.
X v = {xv

1 ,x
v
2 , . . . ,x

v
N}, xv

i ∈ �dv

. Also, assuming that no prior information
for the data is available in any view, define for each view a uniform empirical
dataset distribution (5), as in [10], and also a convex mixture model distribution
(6). Note that all distributions {Qv(x)}V

v=1 share the same prior probabilities
{qj}N

j=1, but have different component distributions fv
j (x).

P̂ v(x) =
{

1
N , x ∈ X v

0, otherwise (5)

Qv(x) =
N∑

j=1

qjf
v
j (x) = Cv(x)

N∑

j=1

qje
−βvdv

ϕ(x,xv
j ) , x ∈ �dv

(6)

Our aim is to locate high quality exemplars (cluster centroids) in the dataset,
by considering all views simultaneously, around which the remaining instances
will cluster. To achieve this, the proposed multi-view convex mixture model min-
imizes the sum of the KL divergences between the empirical distribution and the
convex mixture distribution of each view, given by the following equation:

min
q1,...,qN

s.t.
∑N

j=1
qj=1

{
V∑

v=1

D(P̂ v‖Qv) = −
V∑

v=1

∑

x∈X v

P̂ v(x) log Qv(x) −
V∑

v=1

H(P̂ v)

}

, (7)
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where H(P̂ v) is the entropy of the empirical distribution of the v-th view that
does not depend on the parameters of the multi-view convex mixture model.

It is well known that the sum of convex functions is also a convex function.
Therefore, the above optimization problem, which is a generalization of the single
view case, is also convex, since its objective function is the sum of the single view
objectives which are convex functions. To solve (7) the same efficient-iterative
algorithm as in (2) can be used. It can be shown that the updates on the com-
ponents’ prior probabilities are given by

q
(t+1)
j =

q
(t)
j

V

V∑

v=1

∑

x∈X v

P̂ v(x)fv
j (x)

∑N
j′=1 q

(t)
j′ fv

j′(x)
(8)

and the algorithm is guaranteed to converge to the global minimum as long as
q
(0)
j > 0, ∀j. The prior qj associated with instance xj is again a measure of how

likely this instance is to be an exemplar and takes into account all views.
In the derivation of the above multi-view convex mixture model the following

facts were considered. Different views can have very different statistical proper-
ties, therefore we allow the convex mixture model distribution (6) of each view
to have its own β value and Bregman divergence, i.e. different component distri-
butions. For example, for one view we can use a Gaussian CMM and for another
a Bernoulli CMM. An important property of the single view convex mixture
model is convexity and we wish to preserve this property in the multi-view set-
ting. As a result, summing the single view objectives to construct the multi-view
objective is a natural choice. Finally, since our target is to extract representative
exemplars from the dataset based on all views, we require all convex mixture
model distributions to have common priors qj . Intuitively, this means that an
instance whose corresponding prior probability has a high value, is more or less
a good exemplar in all views.

3.2 Algorithm Implementation

We follow the same steps as in [10] to implement the algorithm that optimizes
(7). Letting sv

ij = exp(−βvdv
ϕ(xv

i ,xv
j )) and using an auxiliary matrix Z and an

auxiliary vector n we update the prior probabilities qj as follows:

Z
(t)
iv =

N∑

j=1

sv
ijq

(t)
j , n

(t)
j =

1
V

V∑

v=1

N∑

i=1

P̂ v(xv
i )sv

ij

Z
(t)
iv

, q
(t+1)
j = n

(t)
j q

(t)
j , (9)

where q
(0)
j > 0 for all instances we want to consider as possible exemplars.

Obviously, our formulation requires only the pairwise distances in each view and
not the instances themselves in order to calculate the priors. Thus it can be
extended to use proximity values, analogously to the single view case.

Suppose we wish to partition a multi-view dataset into M disjoint clusters
C1, C2, . . . , CM using the multi-view convex mixture model. To identify M ex-
emplars (cluster centroids), the instances with the M highest qj values are de-
termined. Specifically, we run the algorithm until the M highest qj values corre-
spond to the same instances for a number of consecutive iterations. Moreover, we
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require that the order among the M highest qj values remains the same during
these iterations. This convergence criterion differs from that in [10]. After finding
the M exemplars, we assign each of the remaining N − M instances to cluster
Ck, associated with the k-th exemplar, that has the largest posterior probability
over all views, according to (10). Note that we refer to the exemplar instances
as XE =

{
xE

1 ,xE
2 , . . . ,xE

M

} ⊂ X and their prior probabilities and component
distributions in the v-th view as qE

k and fvE
k (x), k = 1, . . . , M respectively.

Ck =
{
xE

k

} ∪
{

xi

∣
∣
∣
∣
∣

V∑

v=1

qE
k fvE

k (xv
i )

∑N
j=1 qjfv

j (xv
i )

>

V∑

v=1

qE
l fvE

l (xv
i )

∑N
j=1 qjfv

j (xv
i )

, ∀l 	= k,xi /∈ XE

}

(10)

A final issue on the implementation of the multi-view convex mixture model
is the choice of appropriate values for the βv parameters. Since a separate single
view convex mixture model is defined for each view, we can identify a reasonable
range of βv values in the same way as in the single view case. Following the ideas
of the single view setting the following empirical βv

0 value is derived:

βv
0 = N2 log N/

∑

i,j

dv
ϕ(xv

i ,xv
j ) . (11)

As for the complexity of the algorithm, calculation of the auxiliary quantities
and the update of the priors costs O(N2V ) scalar operations per iteration. If the
distance matrices of the views are not given, computing the sv

ij quantities usually
costs O(N2V d), d = max

{
d1, d2 . . . , dV

}
. Assuming τ iterations are required

until convergence, the overall cost becomes O(N2V (τ + d)) scalar operations.

4 Experimental Evaluation

We aim to examine whether simultaneously considering all views helps to im-
prove the clustering results obtained from the individual views, i.e. compare
single view clustering to multi-view clustering. Since a very common approach
to cluster multiple represented data is to concatenate all the views and then
apply a single view algorithm on the concatenated view, we wish to investigate
whether a multi-view algorithm provides any gains compared to a single view al-
gorithm applied on the concatenated view. To answer these questions, we study
the performance of the single view and multi-view convex mixture model on
multi-view artificial data and two collections of linked documents, where multi-
ple representations for the data occur naturally.

In all experiments we use Gaussian convex mixture models (Gaussian CMM),
i.e. dv

ϕ(xv
i ,xv

j ) = ‖xv
i −xv

j‖2, ∀v and a uniform empirical dataset distribution (5).
We report clustering results i) separately for each view, ii) for the concatenated
view and iii) for the multiple views. To assess the clustering quality we use the
average entropy metric, as in [4,5,9], which measures the impurity of the returned
clusters. Average entropy is given by (12), where N is the dataset size, M the
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Fig. 1. Examples of the artificial dataset: (a) the original dataset generated from three
Gaussian distributions belonging to three classes; (b) one of the five views for ω = 50
and zero translation; (c) clustering into three clusters with the three-view dataset
(ω = 50, βv = βv

0 ) using a Gaussian multi-view CMM. Only 25 instances are misplaced.

number of clusters, c the number of classes, nj
i the number of points in cluster

i from class j and ni the size of the i-th cluster. Lower average entropy values
indicate that each cluster consists of instances belonging to the same class.

H =
M∑

i=1

ni

N

⎛

⎝−
c∑

j=1

nj
i

ni
log

nj
i

ni

⎞

⎠ (12)

4.1 Artificial Dataset

As a first step towards evaluating the performance of the multi-view convex
mixture model, we generated a synthetic dataset, illustrated in Fig. 1(a) and
consisting of 700 instances, from three two-dimensional Gaussian distributions.
Each distribution represents a different class. Views were constructed with the
following mechanism: for each view, we equally translated all instances of the
original dataset and randomly selected ω of them to be moved to a different
class. For example, assume that instance xi had been selected, shown in circle in
Fig. 1(a), that was generated by the first distribution (first class). We randomly
picked one of the other two classes and generated a new point from the corre-
sponding Gaussian distribution. This point, shown in circle in Fig. 1(b), is the
representation of instance xi in the view. Hence, an instance of the first class is
now wrongly represented as an instance belonging to another class.

The above view generation mechanism will help us discover if simultaneously
considering multiple views can correct some of the errors of the individual views
and approach the optimum of H = 0 achieved by a convex mixture model on the
well separated original dataset, since a convex mixture model on a single view
will most probably misclassify all ω instances. For the experiments ω = 50 and
five views were generated, one of which is illustrated in Fig. 1(b). Five multi-view
datasets were created, containing 1, . . . , 5 of the five views respectively. Results
for these datasets are reported in Fig. 2(a) for three clusters and βv = βv

0 , ∀v.
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Fig. 2. Artificial dataset results with Gaussian CMMs in terms of entropy for different
number of views and three clusters

The multi-view convex mixture model constantly achieves the lowest entropy
and it always outperforms the model that uses the concatenated view. Four of
the five individual views have an entropy around 0.3 while one has H = 0.57.
This view is included in the three-view dataset and explains the peak in the
graph for the single views average. The corresponding clustering is illustrated
in Fig. 1(c). At the same time our method achieves H = 0.08 with five views,
confirming that it can considerably boost the clustering performance. Finally,
the multi-view convex mixture model takes advantage of every available view as
the entropy constantly falls as the number of views increases.

We also executed the same experiments as above, but with views for which
ω = 200. Fig. 2(b) depicts the results for this case. The multi-view convex
mixture model is again the best algorithm and for five views it achieves H = 0.41,
which is almost half the entropy of the individual views average and 33% less
than the entropy of the concatenated view.

4.2 Document Archives

We selected two archives of linked documents. The WebKB dataset is a collection
of academic web pages from computer science departments of various universi-
ties, while the Citeseer dataset is a collection of scientific publications. Both are
very popular datasets for evaluating multi-view clustering algorithms [4,5,9] and
multi-view classifiers [1,2]. We used the Bickel and Scheffer [9] version in which
both collections have six classes and two or three views respectively. The first
view of web pages is their text and the second the anchor text of the inbound
links. Publications are represented in terms of a text view, consisting of the title
and abstract of each paper, and two link views, made up of the inbound and
outbound references. For some of the web pages no inbound links with anchor
text exist, while some papers do not have inbound or outbound references. Such
instances were removed, resulting in 2076 web pages and 742 papers.

For each view we generated tfidf vectors and normalized them to unit length
(normalized tfidf), so that square Euclidean distances reflect the commonly used
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Table 1. WebKB results with Gaussian CMMs in terms of entropy and six clusters

Method-View
WebKB Entropy

βv = βv
0 βv = αβv

0

Single view CMM-text 1.54 1.49 (α = 1.5)

Single view CMM-anchor text 1.55 1.44 (α = 3.5)

Single view CMM-concat. text & anchor text 1.56 1.48 (α = 1.7)

Multi-view CMM-text & anchor text 1.5 1.4 (α = 1.5)

Table 2. Citeseer results with Gaussian CMMs in terms of entropy and six clusters

Method-View
Citeseer Entropy

βv = βv
0 βv = αβv

0

Single view CMM-text 1.61 1.56 (α = 0.5)

Single view CMM-inbound references 1.65 1.65 (α = 1)

Single view CMM-outbound references 1.57 1.56 (α = 1.5)

Single view CMM-concat. text & two link views 1.6 1.54 (α = 1.5)

Multi-view CMM-text & two link views 1.5 1.5 (α = 1)

cosine similarity. Both datasets were partitioned into six clusters. Tables 1 and 2
report results for the WebKB and Citeseer collections respectively, where the
multi-view convex mixture model is compared to its single view counterpart.

In a first series of experiments we set βv = βv
0 , ∀v. As can be seen, the multi-

view algorithm improves the clustering of the individual and concatenated views,
making once again apparent the potential of our method and the advantages of
using simultaneously multiple views. Remarkably, for both datasets the concate-
nated view’s performance is even worse than that of some of the single views.
This result explains the need to develop multi-view algorithms and not resort to
tricks that allow single view algorithms to handle multiple represented data.

We also investigated the impact of the βv parameter by searching around the
range of values defined by βv

0 and selecting the fraction α of βv
0 that yields the

smallest entropy (shown in parentheses in Tables 1, 2). A decrease in entropy
for the two collections can be observed and again the multi-view convex mixture
model is the best performer. Note that setting βv = βv

0 is the best choice for
the inbound references view and the multi-view setting (α = 1) of the Citeseer
dataset, indicating that βv

0 provides a good range of values for the βv parameter.

5 Conclusions and Future Work

We have proposed the multi-view convex mixture model, a method that extends
convex mixture models [10] to the multi-view case and identifies exemplars in the
dataset by simultaneously considering all available views. The main advantages
of our method are the convexity of the optimized objective, the ability to handle
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views with different statistical properties and its applicability when only pairwise
distances are available and not the data points. Our empirical evaluation with
multi-view artificial data and two popular document collections, showed that the
presented algorithm can considerably improve the results of a single view convex
mixture model based either on the individual views or the concatenated view.

As for future work, we plan to compare our algorithm to other multi-view
methods and experiment using additional datasets so as to thoroughly inves-
tigate the potential of the multi-view convex mixture model. We also aim to
use multi-view convex mixture models in conjunction with other clustering algo-
rithms which will treat the exemplars as a good initialization. Finally, another
interesting research direction is the assignment of different weights to different
views and the ability to learn those weights automatically under our framework.

Acknowledgments. We would like to thank Steffen Bickel and Tobias Scheffer
for kindly providing their processed datasets.
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